Pertanian lestari


Sustainable Agriculture

Some terms defy definition. “Sustainable agriculture” has become one of them. In such a quickly changing world, can anything be sustainable? What do we want to sustain? How can we implement such a nebulous goal? Is it too late? With the contradictions and questions have come a hard look at our present food production system and thoughtful evaluations of its future. If nothing else, the term “sustainable agriculture” has provided “talking points,” a sense of direction, and an urgency, that has sparked much excitement and innovative thinking in the agricultural world.

The word “sustain,” from the Latin sustinere (sus-, from below and tenere, to hold), to keep in existence or maintain, implies long-term support or permanence. As it pertains to agriculture, sustainable describes farming systems that are “capable of maintaining their productivity and usefulness to society indefinitely. Such systems… must be resource-conserving, socially supportive, commercially competitive, and environmentally sound.”

The term sustainable agriculture means an integrated system of plant and animal production practices having a site-specific application that will, over the long term:

  • satisfy human food and fiber needs
  • enhance environmental quality and the natural resource base upon which the agricultural economy depends
  • make the most efficient use of nonrenewable resources and on-farm resources and integrate, where appropriate, natural
  • biological cycles and controls
  • sustain the economic viability of farm operations
  • enhance the quality of life for farmers and society as a whole.

Concept Themes

Sustainable agriculture integrates three main goals–environmental health, economic profitability, and social and economic equity. A variety of philosophies, policies and practices have contributed to these goals. People in many different capacities, from farmers to consumers, have shared this vision and contributed to it. Despite the diversity of people and perspectives, the following themes commonly weave through definitions of sustainable agriculture.

Sustainability rests on the principle that we must meet the needs of the present without compromising the ability of future generations to meet their own needs. Therefore, stewardship of both natural and human resources is of prime importance. Stewardship of human resources includes consideration of social responsibilities such as working and living conditions of laborers, the needs of rural communities, and consumer health and safety both in the present and the future. Stewardship of land and natural resources involves maintaining or enhancing this vital resource base for the long term.

A systems perspective is essential to understanding sustainability. The system is envisioned in its broadest sense, from the individual farm, to the local ecosystem, and to communities affected by this farming system both locally and globally. An emphasis on the system allows a larger and more thorough view of the consequences of farming practices on both human communities and the environment. A systems approach gives us the tools to explore the interconnections between farming and other aspects of our environment.

A systems approach also implies interdisciplinary efforts in research and education. This requires not only the input of researchers from various disciplines, but also farmers, farmworkers, consumers, policymakers and others.

Making the transition to sustainable agriculture is a process. For farmers, the transition to sustainable agriculture normally requires a series of small, realistic steps. Family economics and personal goals influence how fast or how far participants can go in the transition. It is important to realize that each small decision can make a difference and contribute to advancing the entire system further on the “sustainable agriculture continuum.” The key to moving forward is the will to take the next step.

Finally, it is important to point out that reaching toward the goal of sustainable agriculture is the responsibility of all participants in the system, including farmers, laborers, policymakers, researchers, retailers, and consumers. Each group has its own part to play, its own unique contribution to make to strengthen the sustainable agriculture community.

The remainder of this document considers specific strategies for realizing these broad themes or goals. The strategies are grouped according to three separate though related areas of concern: Farming and Natural Resources, Plant and Animal Production Practices, and the Economic, Social and Political Context. They represent a range of potential ideas for individuals committed to interpreting the vision of sustainable agriculture within their own circumstances.

Plant Production Practices

Sustainable production practices involve a variety of approaches. Specific strategies must take into account topography, soil characteristics, climate, pests, local availability of inputs and the individual grower’s goals. Despite the site-specific and individual nature of sustainable agriculture, several general principles can be applied to help growers select appropriate management practices:

  • Selection of species and varieties that are well suited to the site and to conditions on the farm;
  • Diversification of crops (including livestock) and cultural practices to enhance the biological and economic stability of the farm;
  • Management of the soil to enhance and protect soil quality;
  • Efficient and humane use of inputs; and
  • Consideration of farmers’ goals and lifestyle choices.

Selection of site, species and variety.

Preventive strategies, adopted early, can reduce inputs and help establish a sustainable production system. When possible, pest-resistant crops should be selected which are tolerant of existing soil or site conditions. When site selection is an option, factors such as soil type and depth, previous crop history, and location (e.g. climate, topography) should be taken into account before planting.

Diversity

Diversified farms are usually more economically and ecologically resilient. While monoculture farming has advantages in terms of efficiency and ease of management, the loss of the crop in any one year could put a farm out of business and/or seriously disrupt the stability of a community dependent on that crop. By growing a variety of crops, farmers spread economic risk and are less susceptible to the radical price fluctuations associated with changes in supply and demand.

Properly managed, diversity can also buffer a farm in a biological sense. For example, in annual cropping systems, crop rotation can be used to suppress weeds, pathogens and insect pests. Also, cover crops can have stabilizing effects on the agroecosystem by holding soil and nutrients in place, conserving soil moisture with mowed or standing dead mulches, and by increasing the water infiltration rate and soil water holding capacity. Cover crops in orchards and vineyards can buffer the system against pest infestations by increasing beneficial arthropod populations and can therefore reduce the need for chemical inputs. Using a variety of cover crops is also important in order to protect against the failure of a particular species to grow and to attract and sustain a wide range of beneficial arthropods.

Optimum diversity may be obtained by integrating both crops and livestock in the same farming operation. This was the common practice for centuries until the mid-1900s when technology, government policy and economics compelled farms to become more specialized. Mixed crop and livestock operations have several advantages. First, growing row crops only on more level land and pasture or forages on steeper slopes will reduce soil erosion. Second, pasture and forage crops in rotation enhance soil quality and reduce erosion; livestock manure, in turn, contributes to soil fertility. Third, livestock can buffer the negative impacts of low rainfall periods by consuming crop residue that in “plant only” systems would have been considered crop failures. Finally, feeding and marketing are flexible in animal production systems. This can help cushion farmers against trade and price fluctuations and, in conjunction with cropping operations, make more efficient use of farm labor.

Soil management

A common philosophy among sustainable agriculture practitioners is that a “healthy” soil is a key component of sustainability; that is, a healthy soil will produce healthy crop plants that have optimum vigor and are less susceptible to pests. While many crops have key pests that attack even the healthiest of plants, proper soil, water and nutrient management can help prevent some pest problems brought on by crop stress or nutrient imbalance. Furthermore, crop management systems that impair soil quality often result in greater inputs of water, nutrients, pesticides, and/or energy for tillage to maintain yields.

In sustainable systems, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. Methods to protect and enhance the productivity of the soil include using cover crops, compost and/or manures, reducing tillage, avoiding traffic on wet soils, and maintaining soil cover with plants and/or mulches. Conditions in most California soils (warm, irrigated, and tilled) do not favor the buildup of organic matter. Regular additions of organic matter or the use of cover crops can increase soil aggregate stability, soil tilth, and diversity of soil microbial life.

Efficient use of inputs

Many inputs and practices used by conventional farmers are also used in sustainable agriculture. Sustainable farmers, however, maximize reliance on natural, renewable, and on-farm inputs. Equally important are the environmental, social, and economic impacts of a particular strategy. Converting to sustainable practices does not mean simple input substitution. Frequently, it substitutes enhanced management and scientific knowledge for conventional inputs, especially chemical inputs that harm the environment on farms and in rural communities. The goal is to develop efficient, biological systems which do not need high levels of material inputs.

Growers frequently ask if synthetic chemicals are appropriate in a sustainable farming system. Sustainable approaches are those that are the least toxic and least energy intensive, and yet maintain productivity and profitability. Preventive strategies and other alternatives should be employed before using chemical inputs from any source. However, there may be situations where the use of synthetic chemicals would be more “sustainable” than a strictly nonchemical approach or an approach using toxic “organic” chemicals. For example, one grape grower switched from tillage to a few applications of a broad spectrum contact herbicide in the vine row. This approach may use less energy and may compact the soil less than numerous passes with a cultivator or mower.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s